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Abstract

In this paper the stability of the Black-Scholes Formula of a European
call option is investigated. The value of the call option is mainly insta-
ble respectively chaotic. For short times the value function can be in the
stability region. This depends strongly on the volatility and the interest
rate. Some finance experts have the doctrine, that call options can be
traded over a few decades without high risks. This will be falsified in this
note.
The other aim of this paper is to test the method of Lyapunov exponent
in a financial problem and to extend the scope of econophysics.

1 Introduction

The Black-Scholes Formulae describe the price of a stock option. In this pa-
per I concentrate on Europen call options. The Black-Scholes Formulae are
solutions of the Black-Scholes partial differential equation, which is defining the
mathematical model. For details see [1] and [2].
There is yet no article on the investigation, when the value of a European call
option depending on the time t becomes instable by means of the Lyapunov
exponent.
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2 Black-Scholes Formula for a European Call
Option

The Black-Scholes Formula for European call option reads [2] or [1]:

C(S, t) = N(d1)S −N(d2)Ke−r(T−t) (1)

where C(S, t) is the value the call option, depending on time t (in years) and
the spot price S of the underlying stock. r is the constant interest rate, K is
the strike price of the option and T the expiry time of the option.
N(x) is the cumulant distribution function of the standard normal distribution:

N(x) =
1√
2π

x∫
−∞

e−
z2

2 dz (2)

The quantities d1 and d2 are given as:

d1 =
ln( SK ) + (r + σ2

2 (T − t))
σ
√

(T − t)
(3)

d2 =
ln( SK ) + (r − σ2

2 (T − t))
σ
√

(T − t)
(4)

3 Searching for instability regions and stability
regions in the Black-Scholes Formula for a Eu-
ropean call option by the sign change of the
Lyapunov Exponent

3.1 Derivation of an Inequality

At first I reformulate eq. (1) for the value of an European call option. Time t
(in years) is replaced by the natural number i.

Ci = N(d1,i)S −N(d2,i)Ke
−r(T−i) (5)

And Ci+1 reads:

Ci+1 = N(d1,i+1)S −N(d2,i+1)K e−r(T−(i+1))︸ ︷︷ ︸
Ke−r(T−i)er

(6)
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Eq. (5) yields:

N(d1,i)S − Ci
N(d2,i)

= Ke−r(T−i) (7)

Eq.(7) is inserted into eq.(6). This leads to the following expression:

Ci+1 = N(d1,i+1)S +
N(d2,i+1)

N(d2,i)
er · Ci −

N(d2,i+1)N(d1,i)S

N(d2,i)
· er (8)

This expression is useful in order to calculate the Lyapunov exponent λ. The
Lyapunov exponent of the map xn+1 = f(xn) reads [3], p.24f:

λ(x0) = lim
N→∞

1

N

N−1∑
i=0

log(|f ′(xi)|) (9)

xn+1 = f(xn) is here Ci+1 = f(Ci). For dynamical instability (λ > 0) the
argument of the logarithm has to be:

∣∣∣∣∂Ci+1

∂Ci

∣∣∣∣ =

∣∣∣∣N(d2,i+1)

N(d2, i)
er
∣∣∣∣ > 1 (10)

Eq.(10) rewritten:

|N(d2,i+1)er| > |N(d2, i)| (11)

On both sides the inetgral
0∫
−∞

e−
z2

2 dz is subtracted1:

 d2,i+1∫
−∞

e−
z2

2 dz

 er >

d2,i∫
−∞

e−
z2

2 dz

∣∣∣∣∣∣−
0∫

−∞

e−
z2

2 dz (12)

Replace − z
2

2 by −t2. Then it holds t = z√
2

and 1√
2
dz = dt


d2,i+1√

2∫
0

e−t
2

dt

 er >

d2,i√
2∫

0

e−t
2

dt (13)

1The absolute sign is not anymore necessary.
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The Gaussian error function is defined as follows and can be written as infinte
series ([4] 8.250 1 (Definition of erf(x)) and 8.253 1. 2nd expression ):

erf(x) =
2√
π

x∫
0

e−t
2

dt =
2√
π

∞∑
k=1

(−1)k+1 x2k−1

(2k − 1)(k − 1)!
(14)

The instability inequality eq. (13) assumes the following form ( > 0 means
instability):

F = F (i; r, σ, T,K, S) :=

∞∑
k=1

(−1)k+1

(2k − 1)(k − 1)!

((
d2,i+1√

2

)2k−1

· er −
(
d2,i√

2

)2k−1
)
> 0 (15)

The instability function F is positve for the case of instability. F < 0 means
stability. F depends on the discrete time i (in years), the expiry time T of the
call option, the volatility σ, the interest rate r, the exercise price (i.e. strike
price) of the option and the spot price S of the underlying stock. The definitions
for d2,i+1 and d2,i (eq.(3) and eq.(4)) are inserted:

F (i;T, σ, r,K, S) = F =:

∞∑
k=1

(−1)k+1

(2k − 1)(k − 1)!


(

ln( SK + (r − σ2

2 (T − (i+ 1)))
√

2σ
√
T − (i+ 1)

)2k−1

︸ ︷︷ ︸
f1

·er−

−

(
ln( SK + (r − σ2

2 (T − i)))
√

2σ
√
T − i

)2k−1

︸ ︷︷ ︸
f2

 > 0 (16)

T − (i + 1) > 0 yields i < T − 1. (This condition is stronger than the other
condition (i < T ).)
To solve this inequality is very cumbersome. For this reason I calculated directly
the F values on my notebook. In Appendix A you find the source code in C++
for the calculation of the instability values F (i). The parameters (especially r
and σ) are varied. At the end of this paper you find the F vs. i plots.

There is a numerical problem due to the limit of performance of my notebook.
k cannot be extended to infinity. By trial and error, I found out that the limit
is at kmax = 30. This is not a big problem due to factor 1/(k − 1)! in eq. (16).
The convergency velocity is very high. This is shown in figure (5) on page 11.
After 3 k-steps the limit is reached. The error (in F units) is smaller than 10−4.
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4 Discussion of the F (i) (instability function)
plots

In figure (1) on page 7 the interest rate r equals 5% . The spot price of the
stock S equals 120.0 and the strike/exercise price price K equals 80; units for K
and S are USD or EUR etc. The expiry date is equal to 30 years. The volatility
σ is varried. For high volatilities (greater than 40%) the value function of the
option starts in the stability region. After 10 years all curves are in the insta-
bility region. At the expiry time T = 30 years the curves increases very fast.
Stability close to T seems to be impossible.
In figure (2) on page 8 the volatility σ is equal to 50%. The interest rate r is
varied. The higher the interest rate, the later is the transition from stability to
instability. For r = 25% the order-chaos transition is at t = 18 years.
In figure (3) on page 9 the expiry time T is equal to 10 years. r is fixed and σ
is varied. The stability-instability transition takes place at latest at 5 years for
σ = 50%. For σ ≤ 25% the F (i) curve is always in the stability region.
In figure (4) on page 10 there are two graphs. The graph at the bottom is a
zoom into the region of the transition of stability and instability. The volatility
σ is equal to 25% and T = 30 years. The interest rate is varied. The difference
to the graphs before is that S is equal to 82.0 and K equals 80.0.
In figure (5) on page 11 it is shown (for one example) how fast the convergence
of F (k) is. Behind k = 3 the limiting value is reached.

Finally one can say that European call options cannot be traded
without high risks over long period of some decades. After a few
years(depending on interest rate r, volatility σ, and spot price S and
strike/exercise price K) the instability region of the value function of
the European call option is reached. For extreme high r and σ the
transition of stability to instability can be at for instance at 18 years.
But nevertheless at maturity of the European call option the value
function is always in the instability region.
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A C++ Source Code for the numerical calcula-
tion of F (i) values

#include <cstdlib>
#include <iostream>
#include <math.h>
#include <fstream>

using namespace std;

int factorial(int n)
{
if (n==0) return 1;

int prod=1;

for (int i=1;i<=n;i++)
{
prod = prod*i;

}
return prod;

}

int main(int argc, char *argv[])
{

double r, sigma, T, K, S, t;
int k,i;

r=0.25 /*0.05*/;
sigma=0.25;//0.25

S=82.0;//120.0
K=80.0;//80.0
t=log(S/K);

T=30;

int k_max=30; // k_max>30 k-sum is not a number

double sum,F;

ofstream myfile;

myfile.open("C:\\Users\\Sven\\Documents\\Projekt 7 Options\\r25_sigma_25_S82_K80.xls");

for(i=0;i<=T-2;i++)
{
sum=F=0.0;

for(k=1;k<=k_max;k++)
{

double f1= pow( ( t + ( r - 0.5*pow(sigma,2)*(T-(i+1)) ) / (sqrt(2)*sigma*sqrt( T- (i+1) ) ) ), (2*k-1));
double f2= pow( ( t + ( r - 0.5*pow(sigma,2)*(T-i) ) / (sqrt(2)*sigma*sqrt(T-i) ) ), (2*k-1));

double f = (pow(-1,(k+1))/(factorial(k-1)*(2*k-1)) )*( f1 * exp(r) - f2 );

sum = sum + f;
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}
F = sum;

myfile << i << "\t" << F << endl;

}

myfile.close();
return 0;

system("PAUSE");
return EXIT_SUCCESS;

}

Figure 1: Instability F(i) vs. time i
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Figure 2: Instability F(i) vs. time i
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Figure 3: Instability F(i) vs. time i
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Figure 4: Instability F(i) vs. time i
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Figure 5: Instability F(k) vs. k
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