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This article provides theoretical guidance and 
empirical analysis aimed at differentiating among 
implied volatility skew measures. Industry analysts 
and academics use a variety of measures, but most 
have little formal justification. The author finds 
that most commonly used skew measures are dif-
ficult to interpret without controlling for the levels of 
both volatility and kurtosis. Many ad hoc measures 
fail to meet the conditions for a valid skewness 
ordering. The author’s preferred measure is the (25 
delta put volatility–25 delta call volatility)/50 delta 
volatility; among the measures considered, it is the 
most descriptive and least redundant.

Equity derivatives traders and analysts 
monitor the implied volatility skew 
each day, yet there is little practical 
advice to guide them. What is the 

best measure of the skew? How should one 
compare skew for a 25% volatility stock with 
skew for a 50% volatility stock? Is there any 
intuition suggesting what “large,” “small,” 
or “too much” skew would be? What does 
the implied vol skew mean, anyway? This 
article provides theoretical guidance, backed 
by empirical analysis on S&P 500 Index and 
single stock options, on these issues.

Exhibit 1 illustrates the practical dif-
f iculties facing the derivatives researcher. 
The chart shows two plausible measures of 
skew for three-month S&P 500 options, each 
used by Wall Street strategists. The heavy line 

shows the 25-delta put volatility minus the 
25-delta call volatility. The thin line shows 
this variable normalized by the 50-delta 
implied volatility. The series are both stable 
in 2005 and show a slightly increased skew 
in 2006. The divergence begins around 
May 2007, as the normalized series begins 
suggesting a skew that declines during the 
next two years, in contrast to the increasing 
skew of the other measure. At the end of 
2009, the normalized measure indicated that 
the skew was at average levels, whereas the 
non-normalized version shows a skew that is 
very steep and well above average (“rich”). 
A researcher comparing implied volatility for 
10% out-of-the-money puts and 10% out-
of-the-money calls would also find highly 
conf licting signals from non-normalized and 
normalized versions of his series. Both skew 
measures seem plausible, but which (if either) 
was telling the truth?

The finance literature has not provided 
a clear lead in defining a best practice version 
of skew. This article fills the gap with a rig-
orous examination of common, ad-hoc skew 
measures. To prevent confusion, it is worth 
elaborating on the technical terms used in 
this study. I always use the terms “skew” or 
“implied volatility skew” as a measure of the 
slope of the implied volatility curve for a given 
expiration date, while “skewness” means the 
skewness of an option-implied, risk-neutral 
probability distribution. I do not address the 
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2   WHAT DOES IMPLIED VOLATILITY SKEW MEASURE? SUMMER 2011

link between implied skewness and the skewness of the 
underlying asset in the physical world.

A variety of skew measures, most with little the-
oretical motivation other than plausibility, have been 
used in previous studies. Some of the methodologies 
are summarized in Exhibit 2. Researchers have used 
 regression-based values (Bakshi, Kapadia, and Madan 
[2003]), arithmetic differences in out-of-the-money 
(OTM) put volatility and OTM call volatility, defined 
in percentage moneyness, (Bates [1991]), arithmetic dif-
ferences of put and call volatilities based on delta (Hull, 
Nelken, and White [2004]), and normalized versions of 
these last two variables (Toft and Prucyk [1997], Carr 
and Wu [2007], and Mixon [2009]), among others.

A number of researchers, such as Dennis and 
Mayhew [2001], have moved toward analyzing a mod-
el-free version of the underlying distributional skew-
ness (standardized third central moment) implicit in 

option prices. The relevant issues are not 100% settled 
yet: Dennis and Mayhew, for example, reverse the con-
clusions of Toft and Prucyk by using a different mea-
sure of skew. Xing, Zhang, and Zhao [2010] find that 
future stock returns are predictable based on the implied 
volatility skew, but returns are not predictable based on 
option-implied skewness.

Previous researchers have used series expansions 
and linear approximations to derive analytical expres-
sions relating implied volatility to characteristics of 
the underlying’s distribution. Backus, Foresi, and Wu 
[2004] f ind that their approximations work best for 
options on underlyings with a modestly skewed dis-
tribution. Carr and Wu [2005] extend the analysis and 
approximate skewness as proportional to the difference 
between volatilities for a call and a put equally out of 
the money in delta terms (i.e., a risk reversal), divided 
by the  at-the-money implied volatility.

E X H I B I T  1
Two Measures of Three Month S&P 500 Implied Volatility Skew
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Bakshi, Kapadia, and Madan (henceforth, BKM) 
[2003] also connect risk-neutral moments and the 
implied volatility skew; their empirical tests provide 
substantial support for their theory. This study builds 
on BKM’s research to provide further intuition on the 
structure of the skew and its connections with some 
standard practitioner rules of thumb for measuring the 
skew. The analysis provides practical suggestions on 
choosing from and interpreting some common ad-hoc 
skew measures.

The contributions of this article are as follows. 
First, I provide a theoretical examination to deter-
mine whether several commonly used measures of the 
implied volatility skew define a valid skewness ordering 
as defined in the statistics literature. Second, I use regres-
sion analysis to test the theory against both index and 
single-stock option data. I empirically decompose these 
ad-hoc measures into the portions attributable to the 
volatility, skewness, and kurtosis of the underlying 
risk-neutral distribution implicit in option prices. The 
decomposition provides insight into the characteristics 
each skew measure is actually capturing.

As a by-product of the analysis, I provide eco-
nomic intuition about interpreting risk-neutral moments 
derived from option prices. For example, BKM reported 
that the average level of skewness implicit in S&P 100 
options from 1991–1995 was–1.09, while the average 
skewness for single stocks over that period was much 
closer to zero (averaging–0.31 for the 30 stocks they 
examined). How does one interpret those numbers in 

terms of economically meaningful constructs? This 
article provides clear direction on that issue.

I find the following results. Ceteris paribus, the 
ad-hoc skew measures move in the appropriate direction 
when there is a change in the skewness for the distribu-
tion of the underlying asset, but the relation is generally 
quite dependent on the level of at-the-money (ATM) 
volatility. Such measures do not appear to satisfy a key 
property to be a valid measure of skewness (location and 
scale invariance). In practical terms, analysis of a time 
series of an ad-hoc implied volatility skew may provide 
few clues to the absolute level of skewness or its eco-
nomic importance. At best, week to week changes in the 
volatility skew might be a reasonable proxy for changes 
in skewness; similarly, movements in the level of skew 
over short intervals might be an acceptable proxy when 
other factors (e.g., volatility and kurtosis) are roughly 
constant. It is clear, however, that these measures should 
be treated with caution and represent the amalgamation 
of several factors. They are not directly comparable over 
time (unless volatility is constant) or in the cross-section 
(unless volatility is the same for all assets).

The dependence of the ad hoc skew measures on 
the level of ATM volatility also means that regressions 
incorporating these measures as a proxy for skewness are 
likely misspecified. If a dependent variable is regressed 
on, say, 90% strike volatility minus 110% strike vola-
tility as a proxy for skewness, the regression omits the 
interaction term to control for the dependence of skew 
on other factors. Including the level of volatility on the 

E X H I B I T  2
Select Skew Measures in the Literature
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4   WHAT DOES IMPLIED VOLATILITY SKEW MEASURE? SUMMER 2011

right-hand side is not a sufficient control, as the omitted 
variable is a product of volatility and skewness. The 
resulting bias is likely to render statistical inference on 
such regressions unreliable.

Analysts try to work around the diff iculties in 
interpreting these statistics. A common practice is to 
compare some of the more intuitive measures over a 
trailing window of time such as one year to accommo-
date different regimes of volatility or to examine stocks 
in a single sector at a time. These solutions have practical 
appeal, but they might not solve the problem.

Other researchers have focused on moment-based 
measures of skewness, which are theoretically attractive 
(see, for example, Bank of England [2009, pp. 11-12]). 
Moment-based measures are unfortunately not very 
interpretable to most market participants or researchers. 
More seriously, these measures might be very sensitive to 
the prices of deep out-of-the-money options that trade 
infrequently. The resulting estimates might be noisy 
estimates of the moments of interest.

One solution to this problem is to focus on a cen-
tral portion of the option-implied distribution and to 
rely very little on the prices or implied volatilities of 
illiquid options in the wings of the distribution. Doksum 
[1975] proposed such central skewness measures in the 
statistics literature as a robust way to quantify skewness 
without relying too much on tail behavior. Volatility 
skew measures relying mostly on liquid options might 
also be more relevant as statistics for trading strategies 
that are actually implementable. One such measure is 
(25 delta put volatility–25 delta call volatility)/50 delta 
volatility, which emerges as the preferred skew mea-
sure based on the theoretical and empirical analysis pre-
sented here. This measure has minimal dependence on 
the level of implied volatility and is therefore the least 
redundant descriptor of higher order moments among 
the variables considered. As a description of “market 
sentiment,” it neatly encapsulates relevant information 
on skewness and kurtosis implicit in the cross section 
of option prices.

The structure of the article is as follows. First, 
I provide theoretical results relating various implied 
volatility skew measures to the level of skewness and 
the level of at-the-money implied volatility. Numerical 
and analytical results are based on a f lexible, intuitive 
benchmark model of implied volatility (volatility that is 
linear in option delta). In the second section, I provide 
empirical analysis using S&P 500 option skew over the 

2005–2009 period and relate several skew measures to 
the so-called model-free skewness and kurtosis mea-
sures considered by BKM. In particular, I use regres-
sion models suggested by the theoretical analysis in the 
first section to differentiate among the various practi-
tioner skew measures. In the third section, I examine 
the implied volatility skews of a cross-section of stocks 
to validate the robustness of the results. The final section 
provides concluding comments.

THEORY

This section demonstrates some theoretical results 
to set expectations for the empirical analysis in the next 
section. I assume an intuitive, plausible model for skew-
ness of the option-implied distribution of stock returns 
and compute the implications for several popular mea-
sures of skew. The theoretical framework assumes that 
the option implied distribution generates an implied 
volatility function that is linear in delta.

Implications of the Linear Skew in Delta

The model has some very attractive properties. 
First, it is empirically plausible. For example, when I 
fit the cross-section of S&P 500 implied volatility each 
week in 2005–2009 (for the expiry nearest 90 days), the 
regression R2 averages 95%.1 The model can be seen 
as a more parsimonious version of the implied vola-
tility by delta interpolation used by researchers such as 
Bliss and Panagirtzoglu [2004] who construct option-
implied probability density functions. Similarly, Derman 
et al. [1999] preferred the linear in delta model over 
the linear in percentage strike model when computing 
Taylor series approximations for variance swap strikes. 
The linear in delta model is convenient for extrapo-
lating beyond observed strikes: implied volatility does 
not blow up in the wings of the distribution; instead, it 
tends to asymptote at extreme strikes.

Second, this framework provides enough structure 
so that one can consider skew (e.g., 90% strike put vola-
tility minus 110% strike call volatility) as a function only 
of at-the-money implied volatility and the skewness of 
the implied distribution. For a given level of ATM vola-
tility, there is a one-to-one mapping between skewness 
and the slope of the skew. Hence, I do not make any 
assumptions about the dynamic properties of the option-
implied or actual distribution of the underlying, but 
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I can obtain rich, sharp conclusions by varying only 
two parameters.

Nonetheless, it is worth noting that excess kur-
tosis, by itself, can also generate non-zero values for 
these skew measures. Numerical tabulations by Das and 
Sundaram [1999] and the approximation functions in 
Backus, Foresi, and Wu [2004] suggest that a 90–110 
skew, for example, could be due to kurtosis. BKM con-
clude that skewness is more important than kurtosis for 
equity options, and that is obviously the direction fol-
lowed in this study.

Exhibit 3 uses the model to put observed values 
of skewness into human terms. What sort of intuition 
should we get for option valuation when we know that 
skewness is, say, –0.5 or –1.5? The chart demonstrates 
that a given value for skewness in this model leads to 
different implications for options as the level of ATM 
volatility changes. I plot the probability of an extreme 
outlier—a return less than –2.33 times the ATM implied 
volatility—on the vertical axis and the skewness of the 

distribution on the horizontal axis. The chart shows 
this relation for ATM values ranging from 10% to 50%. 
All of the probabilities are computed under the linear 
vol skew in delta model with a three-month maturity. 
Interest rates are set to 4.17% and dividend yields are set 
to 2%; these are representative values for the 2005–2009 
data used in the empirical analysis. For ease of compar-
ison, the means of the distributions have been adjusted 
by a value of σ2/2 so that all of the distributions have a 
1% probability of such a crash if there is no skewness.

The shapes of the level curves are intuitive. Moving 
from a scenario with zero skewness to a scenario with a 
skewness of −0.5 doubles the likelihood of an extreme 
outlier to 2%. A scenario with a skewness of −1.5 shows 
much greater dependence on the level of ATM volatility. 
At a 10% volatility, the crash probability is around 5.5%, 
but the probability increases as volatility is assumed to be 
at a higher level. With a 30% ATM volatility, the prob-
ability is 6%; a 50% volatility means an 8% probability 
of an extreme outlier.

E X H I B I T  3
Crash Probability under Linear Volatility Skew in Delta
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6   WHAT DOES IMPLIED VOLATILITY SKEW MEASURE? SUMMER 2011

Exhibit 4 illustrates implications of the theory 
across several ad-hoc skew measures. I assume an ATM 
volatility and use the linear skew in delta model to com-
pute implied volatility skew as a function of distribu-
tional skewness and the fixed ATM level. The option 
maturity is set to three months, and interest rates and 
dividend yields are the same as in Exhibit 3. I repeat this 
for ATM values of 10%, 20%, 30%, and 50%. Each solid 
line in the exhibit maps out an ad-hoc skew measure as 
a function of skewness for a given ATM value.

The top two charts in Exhibit 4 display the results 
for the 90% volatility minus the 110% volatility (left hand 
chart) and 90% volatility minus 110% volatility, divided 
by 100% volatility (right hand chart). The bottom two 

charts display results for delta versions of the charts at the 
top. The left chart is for 25-delta put volatility minus 
25-delta call volatility, whereas the right chart is for 
(25-delta put volatility minus 25-delta call volatility)/50-
delta volatility. (For the moment, ignore the black dots on 
the chart, as these are discussed in the next section).

All of the charts show a similar headline story, 
in that the level curves for given ATM values all slope 
downward. Other factors held constant, more left skew-
ness means a higher value for these skew measures. Yet 
the slope of the level curves shows considerable varia-
tion and dependence on the level of ATM volatility. 
For example, consider the 90–110 skew measure (top 
left panel of Exhibit 4) when the underlying skewness is 

E X H I B I T  4
Implied Skewness vs. Implied Volatility Skew Measures under Linear Volatility Skew in Delta

Notes: Solid lines map out theoretical values of four popular volatility skew measures as a function of option-implied skewness, as predicted by the linear-in-
delta volatility skew model. Each panel plots the function for at-the-money (ATM) volatility levels of 10%, 20%, 30%, 40%, and 50%. Dots represent 
observed (skewness, skew) pairs for S&P 500 three-month options, 2005–2009.
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held fixed at −1. The 90–110 skew is six volatility points 
for an ATM volatility of 10%; skew must increase to nine 
volatility points to be consistent with the same skewness 
and ATM volatility of 20%. Moving from the top left 
to the top right chart, the opposite behavior is seen. At 
a 10% volatility and skewness of −1, the (90–110)/100 
skew is 0.55, but it must decline to 0.40 to be consistent 
with the same skewness at an ATM volatility of 20%. 
Neither measure suggests a direct link between vola-
tility skew and skewness. For a given asset, the implied 
volatility skew could increase, decrease, or stay the same 
when skewness changes, depending on movements in 
volatility. Similarly, a cross-sectional comparison of skew 
would not correspond to a cross-sectional ranking of 
skewness if the underlying assets exhibit differing levels 
of volatility. The same level of skew means something 
different at different volatility levels.

Perhaps the most interesting chart is the bottom 
right one. For the (25-delta put volatility–25-delta 
call volatility)/50-delta volatility, there is virtually no 
dependence on the ATM volatility. Roughly speaking, 
more left skewness means a higher value for this mea-
sure of skew, irrespective of the level of volatility. This 
ease of interpretation makes it a very attractive measure 
according to the theory.

 Importing Rigor from the Statistics 
Literature

We can be more systematic about differentiating 
among various skew measures. Van Zwet [1964] intro-
duced the notion of ordering two distributions with 
respect to skewness, and an acceptable measure should 
respect that ordering. For random variables with contin-
uous CDFs F(x) and G(x) and PDFs f(x) and g(x) having 
interval support, G(x) is defined to be at least as skew 
to the right as F(x) if G−1{F(x)} = R(x) is convex. The 
notation is that F<

c
G (“F c-precedes G”). Oja [1981] 

shows that a sufficient condition for F<
c
G is that the 

standardized distribution functions F
S
 and G

S
 cross each 

other exactly twice, with the final sign of F
S
(x)−G

S
(x) 

being positive.
Groeneveld and Meeden [1984, pp. 392-393] 

follow van Zwet [1964] and Oja [1981] and define four 
properties that a valid skewness functional γ should sat-
isfy. The four properties are

• P1. A scale or location change for a random vari-
able does not alter γ. Thus, if Y = cX + d for c > 0 
and −∞ < d < ∞, then γ(X) = γ(Y ).

• P2. For a symmetric distribution γ = 0.
• P3. If Y = −X then γ(Y ) = −γ(X).
• P4. If F and G are cumulative distribution func-

tions for X and Y, respectively, and F <
c
G, then 

γ(X) ≤ γ(Y ).

Van Zwet [1964] showed that the standardized 
third central moment (“the” skewness coefficient) sat-
isfies P1 to P4 and is therefore a valid skewness measure. 
It is difficult to interpret, however. In the analysis that 
follows, I use the standardized third moment as a bench-
mark for the simpler practitioner measures.

Almost all of the measures I examine display a 
dramatic failure of P1. The results, foreshadowed in the 
tabulations above, are based on the following test. I first 
fix a level of skewness for the underlying distribution 
and then compute the skew measures for a range of risk-
neutral volatility levels. For ease of comparison, each 
measure is scaled by its value at 10% ATM volatility. 
Each rescaled measure is therefore indexed to 100% at 
10% volatility and, if the measure satisfies P1, should 
equal 100% when evaluated at any level of volatility. 
Results are displayed in Exhibit 5 for a skewness of −0.5; 
additional analysis available from the author shows that 
the results are robust to different levels of skewness.

The 90–110 skew nearly doubles as volatility 
increases from 10% to 50%, despite the constancy of 
the underlying skewness. The value rises monotonically, 
tracing out a concave function of volatility. The value 
at 50% volatility is approximately 75% larger than the 
value at 10%. The (90–110)/100 skew measure fares just 
as poorly, declining by two-thirds as volatility moves 
from 10% to 50%. This measure declines monotonically, 
tracing out a convex function of volatility.

The 25-delta put volatility minus 25-delta call 
volatility fails in even more spectacular fashion. This 
measure rises almost linearly, with the value evaluated at 
50% volatility a full five times the value at 10% volatility. 
As noted earlier, however, when this delta-based mea-
sure is divided by 50-delta implied volatility, it exhibits 
minimal variation as a function of volatility. When this 
statistic is computed at 50% volatility, it is approxi-
mately 1.05 times the value exhibited at 10% volatility. 
Although none of the measures strictly  conform to P1, 
this normalized version is extremely close to constant 
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8   WHAT DOES IMPLIED VOLATILITY SKEW MEASURE? SUMMER 2011

when compared to the other measures. By this crite-
rion, only the normalized, delta-based measure passes 
the test.

All of the skew measures appear to exhibit the 
proper characteristics to pass the test for P2 and P3, and 
so I do not dwell on them. Property P4, however, poses 
a bigger challenge. It is straightforward to find examples 
of standardized distributions F

S
 and G

S
 such that F<

c
G 

(i.e., F is more left-skewed than G), but the volatility 
skew measures suggest that G is more skewed to the 
left than F. The intuition is that, for some measures, 
the strong correlation with the level of volatility can 
overpower the impact of the asymmetry. For example, a 
distribution that is significantly left-skewed can exhibit 
a very small absolute value for the 90–110 skew if the 
level of volatility is quite high. The 10% below spot/10% 
above spot strike range measured by the 90–110 skew 
can be enormously wide for a low-volatility stock but 

relatively small for a high-volatility stock, resulting in 
an apples to oranges comparison.

One can readily use Oja’s [1981] sufficient condi-
tion to show that F<

c
G for some parameter configu-

rations that generate such misleading results for skew 
measures; I provide some examples in an unpublished 
appendix. The bottom line is that comparing most per-
centage skew measures at very different levels of ATM 
volatility can give misleading results. The (25 delta put 
volatility–25 delta call volatility)/50 delta volatility mea-
sure is the only one considered here that appears rela-
tively immune to this problem.

 Discussion Based on Analytical 
Approximations

The linear in delta skew model for implied vola-
tility offers analytical tractability to explore these results. 

E X H I B I T  5
Relative Values of Implied Volatility Skew Statistics at Various Levels of Volatility
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The final part of this section sketches the approximation 
derivations.

First, parameterize the implied volatility as σ
m
 = 

σ
50Δ + b N dm( (N ) )1

1
2 , where σ

m
 is implied volatility for 

moneyness m, σ
50Δ is the 50 delta implied volatility, and 

dm
1  is the value of d

1
 corresponding to moneyness m. 

The variable d1 is def ined in the usual manner as 
d q T

T1

2

= ln( )S K ( )q 22+)K ( r q 2−r +
σ

 for strike price K, riskless interest 
rate r and dividend yield q. Note that all the delta mea-
sures are expressed in terms of call deltas in this ana-
lytical section. Whereas the previous text talks about, 
say, the volatilities of 25 delta calls and 25 delta puts, the 
expressions in this section refer to volatilities of 25 delta 
calls and 75 delta calls and writes them as σ

25Δ and σ
75Δ. 

This approximation is convenient and should not impact 
the qualitative results.

For moneyness def ined by call delta, we can 
simplify the skew measures easily: σ

75Δ − σ
25Δ= 

d d b( (N ) (N )) ( . )1
75

1 5.Δ ΔN d(N 25d(N . Using the linear approxi-
mation for the standardized normal cumulative distribu-
tion N( )z ( )z ,1

2
1
2

+
π

 which is quite good in the region 
z = −0.75 and z = 0.75, yields the approximate relation 
σ σ

π σ90
1
2

9

50
% %σ110

ln( /11 )=σ b

TΔ
 for percentage moneyness.

Note that the parameter b represents a cross-sectional 
fit parameter on a given date; there is no assumption that 
it is constant over time. One simple way to proceed is to 
note that the variable b can be numerically approximated 
by the function b

1
σ

50Δ for a fixed level of skewness.2 We 
can therefore approximate σ

75Δ − σ
25Δ = (0.5)b

1
σ

50Δ, and 
it is obvious that this skew measure based on the arith-
metic difference between equally spaced in- and out-
of-the-money options exhibits a strong, approximately 
linear dependence on the level of volatility. Dividing 
this measure by σ

50Δ removes the dependence. This is 
precisely the result demonstrated in Exhibit 5 for the 
two delta-based measures.

Perhaps more interestingly, we also obtain the 
approximation σ σ

π90
1
2

9
1% %σ110

ln( /11 ) ( )1=σ
T

b  from these 
results. This expression suggests that there is very little 
dependence on the level of volatility for the fixed per-
centage strike skew measure, and that it is perhaps 
equally as good as the normalized delta-based mea-
sure along this dimension. Further ref lection shows 
why this result obtains and why it is misleading. The 
first order approximation to the standardized normal 
cumulative distribution used in this derivation is good 
as long as we approximate the distribution from about 
three-quarters of a standard deviation below the mean 

to about three quarters of a standard deviation above 
the mean. For the three-month option maturity used 
in these examples, this region of good approximation 
includes 10% below the mean and 10% above the mean 
only if the annualized volatility is above roughly 27% 
(because ± ± ×10 0±± 2× 47% (≈ . )75 %/ ). At lower levels of 
volatility, these two strikes are too far from the mean for 
a linear approximation to the normal CDF to be ade-
quate. Examination of Exhibit 5 confirms this explana-
tion, as this skew measure shows very little dependence 
on the level of volatility, as long as volatility is above 
around 27%. For lower values, the function is clearly 
increasing. It might still be useful to have analytical 
expressions for these volatilities, and we could replace 
the linear approximation to the standardized cumulative 
normal distribution with an ad hoc approximation such 
as N

e z( )z .≈
+ −

1
1 1 702  (Bowling et al. [2009]). Unfortunately, 

the resulting expressions are complicated and might be 
more useful for simplifying applied work than for gen-
erating theoretical insights.

The bottom line from this theoretical analysis is 
that (25-delta put volatility–25-delta call volatility)/50-
delta volatility gives useful results, whereas the other 
measures can give highly misleading results. The analysis 
gives sharp results but is predicated on a plausible model 
describing the cross-section of implied volatility on a 
given date. The next section takes the predictions of 
the model and tests them against real world option data 
without imposing this constraint.

SKEW IN THE TIME SERIES: S&P 500

BKM describe a method for computing skewness 
and kurtosis of the option implied distribution, and I 
implement their method in this section. The idea is to 
compare these “true” statistics with ad-hoc skew mea-
sures computed using the same S&P 500 option data. 
The results are highly consistent with predictions of the 
model developed in the previous section.

Exhibit 6 displays the BKM skewness computed 
for the S&P 500 over the period 2005–2009, as well as 
the 50-delta implied volatility. The underlying data are 
end of week values, and both series are interpolated from 
nearby expiration dates to form constant maturity 90-day 
horizons. I use the standard expiration days and remove 
data for weekly or quarter-end options. The chart clearly 
shows the low-volatility regime from  2005–2006, the 
high-volatility regime in 2007 and much of 2008, and 
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10   WHAT DOES IMPLIED VOLATILITY SKEW MEASURE? SUMMER 2011

the ultra-high-volatility regime in late 2008. Similarly, 
the skewness was range bound around −2.0 during the 
first few years of the sample, rising to a range around 
−1.5 as volatility increased.3

The linear in delta benchmark model and its pre-
dictions plotted in Exhibit 3 help to give intuition to 
these values. So, for example, when S&P implied vola-
tility was around 10% during 2005–2006 and BKM 
skewness was approximately −2.0, the linear volatility 
skew in delta model suggests a the probability of an 
extreme outlier (i.e., a crash) around 6.5%. And when 
S&P volatility moved to the 20% range from mid-2007 
to mid-2008, skewness had moved to −1.5. The crash 
probability declined to around 5.5%. To the extent that 
kurtosis makes those crash scenarios even more likely, 
given skewness and volatility values, the probabilities 
would be even higher under a model incorporating kur-
tosis. Nonetheless, these probabilities appear to be an 

economically large jump from the 1% value implied by 
a symmetric, normal distribution.

Exhibit 7 answers the question “Do implied vola-
tility skew measures track skewness?” Each row shows 
the results of regressing BKM skewness for the S&P 500 
on an ad-hoc measure of skew for the 2005–2009 period.4 
The first three columns of numbers display results from 
a regression on levels. The first two rows are for the 
90–110 skew and (90–110)/100 skew. The next row is 
a common measure of skew describing a cost of protec-
tion: the cost (as a percentage of spot) of the put struck at 
95% of spot minus the cost of the call struck at 105% of 
spot. The last two rows are for the 25-delta put volatility 
minus the 25-delta call volatility and the normalized 
version of this measure, respectively.

Results from the levels regression are striking: 
The only two measures with the expected negative 
slope coefficient are the two normalized measures. The 
slope coefficients are positive for the non-normalized 

E X H I B I T  6
Three-Month Skewness and Implied Volatility for the S&P 500
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THE JOURNAL OF DERIVATIVES   11SUMMER 2011

 measures (signif icantly so for the delta version), and 
the slope is positive and signif icant for the put price 
minus call price measure. The regression results suggest 
that most of the skew measures are below average when 
skewness is high in absolute value and above average 
when the distribution is more symmetric. Contrary to 
the typical interpretation, these measures move in the 
wrong direction if they are supposed to represent the 
skewness of the underlying distribution.

The last three columns in the table are for regres-
sions on f irst differences. Every regression shows a 
negative slope coefficient, suggesting that the implied 
volatility skew gets steeper when skewness becomes 
more negative. The regressions suggest that changes in 
skew do move in the appropriate direction. However, 
the regressions on non-normalized versions, when com-
pared to the regressions on the normalized values, have 
R-squareds that most analysts would view as pitiful. 
Regressions on non-normalized skew measures or on 
the put minus call price yield R-squareds below 5%, 
whereas the two normalized versions have R-squareds of 
15% to greater than 25%. To the extent that differencing 
focuses the attention on skewness and eliminates much 
of the dependence on changes in volatility and kurtosis, 
all of the measures at least move in the correct direction 
as an indicator of skewness. Analysts focusing on, say, 
week-to-week changes in these measures may be able 
to infer skewness changes from any of them, but they 
could easily be misled unless everything else really does 
stay constant.

The regressions in Exhibit 7 are naive. They may 
be helpful with a visual inspection of a chart, but they 
do not provide deep insight into the sources of the skew. 

They do not rely on any of the theory developed in ear-
lier sections and consequently omit relevant variables. 
The regression specifications in Exhibit 8 rely on, and 
extrapolate from, the theory developed earlier. The 
headline conclusion is that the implied volatility skew 
generally impounds information about the volatility, 
skewness, and kurtosis of the underlying implicit dis-
tribution, and the linkages are consistent with the model 
outlined in the previous section.

Before moving to these more comprehensive regres-
sions, it is worthwhile to revisit the charts in Exhibit 4. 
The black dots in the charts are a scatterplot of observed 
data for S&P 500 three-month options using weekly 
data from 2005–2009. One key observation is that the 
majority of the observed data lie below the model’s pre-
dicted values, irrespective of the skew measure. The lin-
ear-in-delta volatility model cannot generate skewness 
levels as negative as the BKM values seen for the S&P 
500 in the real world. This suggests a significant role for 
kurtosis in exaggerating the impact of skewness relative 
to the benchmark model.

The foregoing analysis suggests the following 
regression specification:

 skew =  a0
 +(b

0
 + b

1
 × volatility + b

2
  

× kurtosis) × (skewness)

Based on the intuition outlined above, we expect 
the following signs for slope coefficients. The coefficient 
b

0
 is expected to be negative for all of the implied skew 

measures; more negatively skewed distributions have 
higher levels of implied volatility skew. The coefficient 
b

1
 is expected to be negative for most cases, meaning that 

the slope of the level curves are steeper at higher levels of 

E X H I B I T  7
Results from Regressing BKM Skewness on Various Implied Volatility Skew Measures

Notes: Values in parentheses are t-statistics computed using Newey-West standard errors with 13 lags. The data are end-of-week values for the S&P 500 
from January 7, 2005, to December 24, 2009.
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12   WHAT DOES IMPLIED VOLATILITY SKEW MEASURE? SUMMER 2011

volatility. The expected sign for b
2
 is positive, as higher 

kurtosis is expected to f latten out the level curves.
Estimated slope coefficients and robust t-statistics 

are displayed in Exhibit 8. Shaded cells in the table rep-
resent coefficients with t-statistics with absolute value 
greater than two. The results generally indicate that 
skew is related to skewness, but there is a substantial role 
for the interaction with volatility and kurtosis. Incor-
porating all three variables raises the adjusted R2 values 
from 10 to 70 percentage points. The implied volatility 
skew ref lects more than skewness.

These regression results can be used to distinguish 
among the skew candidates. I first ask if the slope coef-
ficients conform to the sign implied by the theory, and 
I focus on results for the full regression models. The 
model predicts a negative coefficient on skewness, and 
this is generally verified quite strongly. The 25-delta put 
volatility minus 25–delta call volatility is the exception, 
but the dominant effect in this case is the relation of the 
measure with the level of volatility, which is consistent 
with the prediction of the theoretical model. The gen-
erally negative coefficient for the volatility interaction 

term is verified in the empirical results. The most inter-
esting case is for the (25-delta put volatility−25-delta 
call volatility)/50-delta volatility, which has virtually no 
role for this variable. Consistent with the model’s pre-
dictions, the level of volatility has very little impact on 
this skew. Finally, the hypothesized positive coefficient 
for the kurtosis interaction term is strongly verified in 
almost all cases.

Some additional tests confirm the conclusions from 
the table. I also ran the regressions including the kurtosis 
variable in addition to the interaction terms. Regression 
R2 values generally rise just a few percentage points, 
the signif icant variables from the regression without 
the non-interacted kurtosis term generally remain sig-
nif icant, and the kurtosis term is highly signif icant. 
The signs on the kurtosis terms are negative, and the 
resulting regression fits can generate skew measures that 
are positive or negative even if skewness is zero.

The overall message from the empirical exercise 
is that the predictions of the linear-in-delta model for 
implied volatility are upheld in S&P 500 option data. 
Common skew measures ref lect the volatility, skewness, 

E X H I B I T  8
Results from Regressing Various Implied Volatility Skew Measures on BKM Skewness and BKM Skewness 
Interacted with ATM Volatility and BKM Kurtosis

Notes: Values in parentheses are t-statistics computed using Newey–West standard errors with 13 lags. Cells shaded gray have t-statistics with an absolute 
value greater than 2. The data are end of week values for the S&P 500 from January 7, 2005, to December 24, 2009.
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THE JOURNAL OF DERIVATIVES   13SUMMER 2011

and kurtosis of the underlying distribution. The (25-delta 
put volatility−25-delta call volatility)/50-delta vola-
tility measure is the main exception, as it appears not to 
exhibit a statistically significant dependence on the level 
of ATM volatility.

SKEW IN THE CROSS-SECTION: SINGLE 
STOCKS

In practice, comparisons of the implied volatility 
skew are often carried out on individual stocks. This is 
typically a cross-sectional comparison at a given point in 
time to determine which stocks have very high or very 
low levels of skew. While further analysis is conducted to 
examine specific trading opportunities or to investigate 
anomalies, the simple ranking of stocks by skew might 
be an informative first screen. The difficulty appears to 

be finding an appropriate measure of skew by which to 
rank the stocks. Thus motivated, this section examines 
the skew measures for single stock options.

To provide context, Exhibits 9 and 10 plot BKM 
skewness and kurtosis levels, respectively. Both charts 
show quarterly values for the S&P 500 and for constitu-
ents of the S&P 100. For the S&P 100, values for the 
25th, 50th, and 75th percentiles of the cross section are 
plotted for each quarter.

Exhibit 11 presents the results of regressions of 
the various implied volatility skew measures on BKM 
skewness and BKM skewness interacted with the level 
of ATM volatility and with BKM kurtosis. The table 
replicates the same regressions shown in Exhibit 8, 
but for single stocks in the S&P 100. The data are 
 end-of-quarter snapshots from December 2004 to 
December 2009 (21 quarters). Because the errors in the 

E X H I B I T  9
BKM Skewness for the S&P 500 and Constituents of the S&P 100, Quarterly from December 2004 
to December 2009

Note: For the S&P 100 constituents, the skewness values at the 25th, 50th, and 75th percentiles are plotted.
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14   WHAT DOES IMPLIED VOLATILITY SKEW MEASURE? SUMMER 2011

 regressions are quite likely to be correlated across stocks, 
the Fama–MacBeth [1973] two-pass regression tech-
nique is employed. Regressions are computed for each 
quarterly cross section of data, and the coefficients for 
each regression are averaged across time. The t-statistics 
for each coefficient are computed from the time series 
of estimated coefficients.

The results are qualitatively similar to those for 
the index option regressions. The coefficient on skew-
ness is mostly negative, ref lecting the correlation of 
implied volatility skewness with skew, and the coef-
ficient on the interaction term between volatility and 
skewness is signif icant for several of the regressions. 
The coefficients on the interaction terms for kurtosis 
and skewness are significant in the regression for the 
(90–110)/100 measure, as well as for the regression of 
the (25 delta put volatility−25 delta call volatility)/50 
delta volatility measure. There is often a sharp increase 

in the explanatory power of the regressions when the 
interaction terms are included, suggesting that they are 
indeed important to explain the variation in most of 
the measures. The adjusted R2 for the 90–110 regres-
sion, for example, increases from 23.4% to 31.4% when 
the volatility interaction term is included, although this 
fit is still not as good as the fit for the regression of the 
(25 delta put volatility–25 delta call volatility)/50 delta 
volatility skew measure on skewness alone (a 33.4% R2). 
As with the index option regressions, we find that the 
(25 delta put volatility–25 delta call volatility)/50 delta 
volatility skew fits the data and the theory quite well. 
This measure features no significant coefficient on the 
volatility/skewness interaction variable, and the compre-
hensive regression incorporating the kurtosis/skewness 
interaction has an R2 just over 42%.

Despite the regression results, the significant corre-
lation documented in the regressions between the 90–110 

E X H I B I T  1 0
BKM Kurtosis for the S&P 500 and Constituents of the S&P 100, Quarterly from December 2004 
to December 2009

Notes: For the S&P 100 constituents, the kurtosis values at the 25th, 50th, and 75th percentiles are plotted.
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THE JOURNAL OF DERIVATIVES   15SUMMER 2011

skew and the BKM skewness might tempt one to stick 
with the 90–110 skew given its simplicity and common 
usage. Connecting the theoretical results derived ear-
lier with the real world data can help put that inclina-
tion to rest. According to the numerical simulations, 
the 90–110 measure (for a constant level of skewness) 
is not particularly sensitive to changes in the level of 
volatility if volatility is above the mid-twenties, but it is 
very sensitive at lower levels of volatility. In the S&P 100 
constituent panel data used in these regressions, I find 
that the proportion of ATM volatilities less than 25% 
significantly exceeds one-half in every cross-section of 
data from December 2004 to June 2007. The 90–110 
skew appears inappropriate when both low and high 
volatility stocks are being compared.

As a final robustness check, I ran the single stock 
regressions including the kurtosis variable in addition to 
the interaction terms. The conclusions from the previous 
regressions remain the same, and the average regression 
R2 values rise by a couple of percentage points. In none 
of the cases is the additional kurtosis variable deemed 
statistically significant at conventional levels.

The regression results have practical implica-
tions. An active research area is to use panel data to 
explore linkages across markets. Cremers et al. [2008], 
for example, study the consistency of option pricing 
and credit derivative pricing for individual firms. The 
theoretical model they construct is based on skewness, 
but in their empirical work they proxy skewness with 
92% strike put volatility minus ATM volatility (filling 
in data near these target values by assuming a linear in 
percentage moneyness relation). They find a significant 
effect on credit spreads for the level of ATM volatility, but 
a much more modest impact for skewness. In effect, their 
model suggests a regression such as credit spread = α + β
(volatility) + γ(skewness) + ε, and they regress credit spread 
= α + β(volatility) + γ(skew) + ε. The regression results 
in this article emphasize the importance of interactions 
among volatility, skewness, and kurtosis in explaining 
the level of implied volatility skew, suggesting that they 
should be included in regressions proxying skewness 
with implied volatility skew. Omitting the interaction 
variables might have significant impact on the statistical 
inference for such regressions.

E X H I B I T  1 1
Results from Fama–MacBeth Two-Pass Regressions of Implied Volatility Skew Measures on BKM Skewness 
and BKM Skewness Interacted with ATM Volatility and BKM Kurtosis

Notes: Values in parentheses are t-statistics computed from the time series of cross-sectional regression coefficients. Cells shaded gray have t-statistics with an 
absolute value greater than 2. The data are end-of-quarter snapshots of S&P 100 constituents from December 2004 to December 2009.
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CONCLUSIONS

The motivation for this article is to find out what 
practitioner measures of the implied volatility skew 
actually measure. The investigation is both theoretical 
and empirical. I begin with a model describing implied 
volatility as a function of option moneyness, and I work 
out the implications relating various measures of skew 
to volatility and skewness of the underlying risk-neutral 
distribution. The second step is to test the implications of 
the model against index and single stock option data.

A main conclusion from the analysis is that many 
popular skew measures are strongly inf luenced by the 
levels of volatility and kurtosis implicit in the distribution. 
Using these measures to examine skew in isolation can be 
misleading if the analyst does not control for other changes 
in the distribution besides skewness. If the objective is to 
use a simple, robust measure of skewness that is not nec-
essarily highly correlated with the level of volatility, the 
analysis in this article provides clear direction. The most 
descriptive and least redundant measure examined here is 
the (25 delta put–25 delta call)/50 delta volatility.

An objective defined in this article is to evaluate the 
volatility skew measures on whether they are valid skew-
ness functionals, as defined in the statistics  literature. 
A key takeaway from the statistics literature is that there 
is not a single measure of skewness that is unambiguously 
best for all purposes. Other evaluation techniques, for 
example, ones that identify specific trading opportuni-
ties, might be very informative about the usefulness of 
various volatility skew statistics. Furthermore the theo-
retical framework used in this article (linear volatility 
skew in delta) is a plausible and tractable reduced form 
model, but it lacks a deeper structural model as motiva-
tion. The model is agnostic about comovements among 
volatility, skewness, and kurtosis, as well as the uni-
variate dynamics of these statistics. The approach taken 
in this study allows for sharp, interesting results, but it 
leaves obvious opportunities for further advancement.

ENDNOTES

This paper ref lects the opinions of the author and does 
not necessarily ref lect the opinions of Lyxor Asset Manage-
ment Inc. The author thanks Bill Bane, Stephen Figlewski, 
Nikunj Kapadia, and Dan Kryzman for helpful comments 
on earlier drafts.

The appendix is available from the author on request.

1The regressions are OLS and exclude the deepest out-of-
the-money options (ones with deltas less than 0.1 or greater than 
0.9). Note that Bliss and Panagirtzoglu [2004] use a weighted 
least squares technique to downweight low-vega options, miti-
gating the convexity that appears in the raw data.

2A slightly better approximation appears to be a convex 
function such as b1

1 03

50

.
Δ( )50Δ , but both approximations are ad 

hoc and based on numerical experiments.
3Contract level data were obtained from iVolatility.

com. End-of-day implied volatility, option delta, strike price, 
and soon are provided for each contract.

4All of the regressions in this and subsequent tables use 
Newey–West [1987] standard errors with 13 lags. Residuals 
from the regressions are highly serially correlated. For the 
most complicated regressions in Exhibit 7, for example, the 
Akaike Information Criterion selects from 3 to 18 lags when 
regressing residuals on lagged residuals. VARHAC covariance 
matrix estimation (den Haan and Levin [1998]) produces the 
same qualitative results.
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This appendix provides supporting analysis regarding the linear-in-delta theoretical model for implied volatility.  

• Section A1 provides context by displaying several probability density functions (and associated statistics) 

generated with the model. [Page 2] 

• Section A2 elaborates on numerical experiments providing evidence on a theoretical property that a skewness 

functional should satisfy: location and scale invariance.  [Page 3] 

• Section A3 elaborates on another theoretical property of valid skewness orderings: preservation of van Zwet’s 

c-ordering of distributions. [Page 5] 

 
A1. EXAMPLES 

Chart A1 displays four probability density functions, each with 20% annualized at-the-money implied 

volatility. In these cases, and in the others in this appendix, the interest rate and dividend yield are set at 0.0%, and 

the time to maturity of the options is set at three months. The four functions differ in the level of skewness and, 

therefore, in the associated implied volatility skew statistics. Table A1 displays implied volatility skew statistics 

associated with these distributions. 

Chart A1.  
Probability density functions generated by the linear-in-delta skew model 
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Table A1.  

Parameters and statistics for examples in Chart A1 
PARAMETERS OUTPUTS 

ATM 
Volatility 

b 
(Volatility 

slope in 
delta space) 

Volatility 
of risk 
neutral 
density 

Skewness 
of risk 
neutral 
density 

90% Vol – 
110% Vol 

(90 – 110) / 
100 

25 delta put 
vol – 25 

delta call vol 

25 delta put 
vol – 25 delta 
call vol) / 50 

delta vol 

% per year  % per 
year  Volatility 

points % Volatility 
points % 

20.0% 0.000 20.0% 0.00 0.0 0.00 0.0 0.00 
20.0% 0.061 20.4% -0.50 4.2 0.21 3.1 0.15 
20.0% 0.127 21.1% -1.00 9.1 0.45 6.4 0.32 
20.0% 0.204 22.0% -1.50 15.7 0.77 10.2 0.51 

 

A2. LOCATION AND SCALE INVARIANCE 

Chart A2(a).  
Robustness tests for Exhibit 5 (scaled) 
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Charts A2(a) and A2(b) elaborate on the robustness tests for Exhibit 5 in the paper. The paper shows 

implied volatility skew statistics as a function of volatility for skewness = -0.50. Figures in Chart A2(a) display the 

same scaled skew statistics for skewness = -0.25, -0.50, and -1.00; figures in Chart A2(b) show unscaled values.  

Chart A2(b).  
Robustness tests for Exhibit 5 (not scaled) 
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A3. PRESERVATION OF VAN ZWET’S CONVEXITY ORDERING 

Table A3 displays the input parameters and volatility skew statistics for an example case in which some 

standard implied volatility skew measures fail to preserve van Zwet’s convexity ordering. More specifically, I 

compute implied volatility skew statistics for a low volatility, highly left-skewed distribution and for a high 

volatility, less left skewed distribution. Two of the implied volatility skew statistics (the 90 - 110 skew and the 25 

delta put volatility minus 25 delta call volatility) are higher for the less left-skewed distribution, thereby sending 

precisely the wrong message as measures of skewness. Their significant correlation to volatility overpowers their 

connection to skewness in these cases.  
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The two panels of Chart A3 illustrate the distributions used to compute the above counterexample. The top 

panel shows the standardized CDFs of the two random variables. The distributions are c-comparable, with F <c G, 

according to Oja’s [1981] result regarding the crossing points of the functions. The crossing points are marked on 

the chart. The bottom panel shows the PDFs of the two random variables. 

TABLE A3.  

Example: Two measures of skew fail to preserve van Zwet’s c-ordering 
PARAMETERS OUTPUTS 

ATM 
Volatility 

b 
(Volatility 

slope in 
delta space) 

Volatility 
of risk 
neutral 
density 

Skewness 
of risk 
neutral 
density 

90% Vol – 
110% Vol 

(90 – 110) / 
100 

25 delta put 
vol – 25 

delta call vol 

25 delta put 
vol – 25 delta 
call vol) / 50 

delta vol 

% per year  % per 
year  Volatility 

points % Volatility 
points % 

45.0% 0.312 49.9% -1.00 10.9 0.23 15.6 0.35 
12.5% 0.100 13.2% -1.25 8.9 0.71 5.0 0.40 

 
Table A4 provides results for another counterexample regarding van Zwet’s convexity ordering. The table 

shows that the (90 – 110)/100 measure is lower for a highly skewed distribution than it is for a more symmetric 

distribution. As before, the measure’s correlation to volatility overpowered its correlation to skewness. The result is 

a measure that can, for certain parameter configurations, give precisely the wrong suggestion regarding the level of 

skewness in the market. 

The panels of Chart A4 mimic those in Chart A3. The crossing points of the two CDFs are marked in order 

to show consistency with Oja’s [1981] results showing c-precedence. The relation F <c G holds for the two 

distributions, but the measure (90 – 110)/100 does not respect that relation. 

TABLE A4.  

Example: Another measure of skew failing to preserve van Zwet’s c-ordering 
PARAMETERS OUTPUTS 

ATM 
Volatility 

b 
(Volatility 

slope in 
delta space) 

Volatility 
of risk 
neutral 
density 

Skewness 
of risk 
neutral 
density 

90% Vol – 
110% Vol 

(90 – 110) / 
100 

25 delta put 
vol – 25 

delta call vol 

25 delta put 
vol – 25 delta 
call vol) / 50 

delta vol 

% per year  % per 
year  Volatility 

points % Volatility 
points % 

15.0% 0.094 15.6% -1.00 7.9 0.52 4.7 0.31 
30.0% 0.256 33.1% -1.25 13.6 0.44 12.8 0.43 
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Chart A3. Two standardized distributions, F(x) more skewed to left than G(x) 

Panel A: CDFs 
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Panel B: PDFs 
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Chart A4. Two standardized distributions, F(x) more skewed to left than G(x) 

Panel A: CDFs 
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