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Abstract 

 

We derive an alternative volatility index from options on E-Mini S&P 500 futures and compare 

it with the VIX to see which index could provide a more efficient measure of volatility and risk. 

VCME, our alternative volatility measure, and the VIX are very similar in price and trend, are 

quite efficient at forecasting future volatility in the short-term, but lose their effectiveness over 

longer periods of time. We do not find any meaningful relationship with volatility and future 

stock returns. However, we propose that VCME may be more attractive to a financial institution 

seeking responsive risk measures, while on average generating less deviations from actual 

volatility at any time frame from 1 to 21 days forward. 
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Introduction 

Motivated by the quest to find an efficient measure of risk, we begin this study examining 

the effectiveness of the volatility index (VIX) and investigate whether the VIX is a good proxy 

for risk.  This study is an extension of previous work on volatility, which concluded that the VIX 

consistently over-estimates actual volatility in normal times but it underestimates volatility in 

times of crises (Kownatzki, 2015).  The VIX represents implied volatility from option prices and 

it is commonly known as the “fear index.”  Robert Whaley, its creator, suggests that the VIX is a 

cost-effective way to hedge risk because it provides a reliable estimate of expected short-term 

volatility (Whaley, 1993). While the forward-looking aspects of the VIX are an important feature 

of investor risk expectations, the investor fear gauge (Whaley 2000) may need to be re-examined 

since these expectations of risk, derived from S&P 500 options prices, are typically inflated 

(Kownatzki 2016).  

 

Option traders have long recognized that fear, and therefore expected risk, is overstated.  

This over-estimation of risk translates directly into higher option premiums, given that volatility, 

the proxy for risk, is perhaps the most critical variable determining the pricing of options. Since 

volatility is a latent measure that cannot be observed, it needs to be estimated. Market 

participants derive an implied volatility measure by inverting the Black-Scholes formula (Black 

and Scholes 1973), and solve for the only un-known variable, volatility. In practice, implied 

volatility is thusly calculated for each strike price of any tradeable option. Recognizing that the 

uncertainty over the true value of volatility may be the main factor in over-estimating risk, option 

traders have an edge and they are given an attractive incentive for their typical go-to strategy - 

selling, rather than buying options. In essence, option traders feed on the fear of investors just 

like traditional insurance companies feed on people’s fears over the unknown by inflating option 

premiums.  

 

Previous research also suggests that the level of the VIX does not provide meaningful 

answers to the important question of how risk affects future stock returns (Kownatzki, 2015).  In 

an effort to improve upon current risk metrics such as the VIX, we investigate whether an 

alternative volatility index, derived from options prices on E-Mini S&P 500 futures, could 
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provide better estimates of future market risk. In this context, we examine if such an index can 

help us better understand how current market volatility affects future stock returns.   

 

Since the VIX is derived from options prices on the S&P 500 Index, which in itself is not 

a tradeable instrument, it may not fully reflect actual market sentiment and it may therefore 

provide inaccurate investor expectations on risk.  Futures as well as Options on Futures may 

have additional information priced in since futures prices can often have a richer information 

content, particularly within the important 30-day forward-looking time period associated with the 

VIX. 

 

Research Questions 

Our first task focuses on the model derivations and construction of this alternative VIX 

measure. We propose a new volatility measure, derived from exchange-traded options on E-Mini 

S&P 500 futures, a financial instrument created by the CME Group in Chicago. This new 

volatility measure shall be called VCME. 

 

Given the constraints of the market place and the intricacies of exchange-traded options 

on futures, we examine whether the results provide reasonable volatility estimates. The bulk of 

this study therefore focuses on comparisons between the two volatility measures: VIX and 

VCME  

 

We conduct comparison studies of the two volatility measures by examining the following 

research questions: 

 

 VIX versus VCME: Which index provides better estimates of future volatility? 

 VIX versus VCME: Which index provides better estimates of future S&P 500 returns? 

 

Our study primarily focuses on a direct comparison of the two volatility measures. In 

addition to comparing the effectiveness of both volatility measures in term future volatility 

forecasts, we also include inter-temporal effects on future volatility as well as future S&P 500 

index returns.   
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Literature Review 

The literature on volatility, the widely-accepted metric of financial risk, is rich but also 

laden with controversy.  As early as Frank Knight (Knight 1921) economists questioned the 

usefulness of a metric that can be measured when uncertainty, the true nature of risk, was simply 

not measureable.  In order to distance itself from gambling and to associate investment decisions 

with science rather than pure speculation, quantifiable metrics were critical for the prospects of 

the finance industry - how else could the typically risk-averse investors be assured that their 

investments were sound within the given risk parameters.   

 

Among the various risk metrics, implied volatility, represented by the VIX, has been the 

go-to metric for many financial risk management applications despite the fact that many of the 

assumptions for these risk models do not hold up to empirical examinations.   

 

The notion that financial asset returns were normally distributed permeated most 

financial models for decades even though Benoit Mandelbrot revealed the presence of 

leptokurtosis1 in empirical return distributions (Mandelbrot 1963).  There have been other critics 

of the normality assumption in return distributions, but it took another four decades before 

Eugene Fama (1970), the creator of the Efficient Market Hypothesis raised some concerns.  He 

warned that “empirical examinations of asset prices reveal that the problems are serious enough 

to invalidate most applications of the CAPM” (Fama and French 2004).  More recently, 

empirical examinations of daily stock return distributions suggest that financial return series are 

heavy-tailed and possibly skewed (Rachev et al 2005).  Nevertheless, it took the financial crisis 

of 2008/09 before academics as well as finance practitioners seriously questioned Gaussian 

normality, one of the main assumptions in many financial models. 

 

Until that crisis period, most researchers were more occupied with forecasting volatility 

rather than seriously questioning the main assumptions that allow us to estimate risk.  One 

evidence of that pre-occupation with volatility forecasting comes in the form of an extensive 

glossary of over 150 GARCH-type models compiled by Tim Bollerslev. Bollerslev’s work on 

                                                           
1 Kurtosis measures the mass of a distribution’s tails. The kurtosis of a normal distribution is 3.  Values above 3 are 
considered leptokurtic or simply heavy-tailed (Stock & Watson 2011) 
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dynamic volatility forecasting (Bollerslev 1986) culminated in the creation of Generalized Auto 

Regressive Conditional Heteroscedasticity (GARCH)2.  However, Bollerslev lamented the fact 

that there are so many competing models in what he described as a perplexing ‘alphabet-soup’ of 

acronyms and abbreviations for these models (Bollerslev 2007).   

 

In addition to GARCH-type models, historical and implied volatility models have also been 

used to estimate future risk.  Blair, Poon and Taylor (2000) ranked the VIX highest for providing 

the most accurate out-of-sample forecasts for volatility.  In an extensive survey of volatility 

forecasting models Granger and Poon review 93 published papers on various volatility models 

(Granger and Poon 2003). They found that implied volatility from options using the Black-Scholes 

model ranked higher than historical volatility and GARCH (Granger and Poon 2003), albeit with 

sometimes contradicting results.   

 

Studies by Martins and Zein (2002) suggest that volatility forecasts have higher 

explanatory power at shorter time horizons whereas Christoffersen and Diebold notice a decrease 

in the accuracy of equity and foreign exchange volatility forecasts as they increase the time horizon 

from one to ten days. They conclude that volatility forecasts may not be of much value if the 

horizon of interest is more than ten or twenty days (Christoffersen and Diebold 2000). This directly 

calls into question the effectiveness of the VIX which provides a volatility forecast of 30 calendar 

days.    

 

Multiple competing models also raise the question as to the selection of the best model.  

More importantly, the gravity of the recent crisis suggests that most if not all of the models failed 

to produce reliable risk estimates that could have prevented such devastating economic 

repercussions. Robert Whaley argued that the VIX is a cost-effective way to hedge risk (Whaley, 

1993) but we are not aware of institutions or investors who have been able hedge their way out 

of the crisis with the help of the VIX.  Conflicting results from competing models and volatility 

                                                           
2 Whereas ARCH specified conditional variance as a linear function of past sample variances only, the GARCH 

process allowed lagged conditional variances to enter into the process as well.  GARCH estimates variance by two 
distributed lags, one on past squared residuals and a second one on lagged values of the variance itself.  The 
simplest GARCH process is GARCH (1,1) given by:  
ℎ𝑡 =  𝛼0 + 𝛼1𝜀𝑡−1

2  + 𝛽𝑡ℎ𝑡−1  where, 𝛼0 > 0, 𝛼1 ≥ 0 𝑎𝑛𝑑 𝛽𝑡 > 0  (Bollerslev 1986) 
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estimates also encourage us to find an alternative to existing volatility models.  Our work in the 

following chapters is an attempt to generate a new volatility index with more reliable risk 

estimates. 

 

Data & Methodology 

We obtain data from ivolatility.com for put and call options on E-mini S&P 500 Futures 

contracts. Our data set comprises daily end-of-day settlement prices from July 2011 to July 2016 

based on the National Best Bid and Offer (NBBO3).  The total dataset includes over 8 million 

observations for call and put prices since for each given settlement date, there are several futures 

and options expirations and thus, thousands of strike prices.  For instance, on our starting date, 

11 June 2011, there are about 4,000 individual settlement prices relevant to our calculations.  

These consist of the strikes and put/call prices for options expiring on 7/15/2011, 7/22/2011, 

7/29/2011, 8/5/2011, 8/19/2011, 8/31/2011 and 9/16/2011 based on the underlying futures 

contracts expiring on 9/16/2011 in addition to strikes for options expiring on 9/30/2011, 

10/21/2011, 11/30/2011 and 12/16/2011 for underlying futures contracts expiring on 12/16/2011. 

 

Our new volatility measure, VCME, is derived from the 30-day expected volatility of the 

S&P 500 futures using a similar methodology as described in the CBOE White Paper for the 

calculation of the VIX (CBOE 2014). We use Bi-Weekly options to determine the two main 

components of the VCME measure that are the near and next-term options with an expiration 

date between 23 to 50 days. Our use of a 50-day upper bound differs from the VIX’s 37 day 

upper bound due to the nature of the E-Mini Futures that led to multiple cases where we could 

not match a next-term option to a near-term contract. We use Stata to calculate the different 

variables associated with the volatility measure. We assume an interest rate of 0.0025 for the 

front and 0.004 for the back contract based on an average yield of T-Bills for our time periods 

observed which is similar to the process outlined by CBOE (CBOE 2014). We then follow the 

methodology used in the calculation of the VIX to get the following:  

𝑉𝐶𝑀𝐸 = 100 ∗ √
𝑡1

𝑡𝑀
∗

𝑡2 − 𝑡𝑀

𝑡2 − 𝑡1
∗ 𝜎1 +

𝑡2

𝑡𝑀
∗

𝑡2 − 𝑡𝑀

𝑡2 − 𝑡1
∗ 𝜎2 (1) 

                                                           
3 NBBO is the lowest ask price and the highest bid price available to investors.  U.S. securities brokers are required 
to guarantee price execution based on NBBO. 
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Where,  

T1= Number of minutes to the settlement of the Near-Term Options 

T2= Number of minutes to the settlement of the Next-Term Options 

Tm= Number of minutes in 30 days.  

 σ2 =
1

𝑡1
∗ 2𝑒𝑟1∗𝑡1 ∗ ∑ (𝑃𝑖

 (𝑆𝑛−𝑆𝑛−1+𝑆𝑛+1−𝑆𝑛)

2 𝑆𝑖
2 ) − (𝑒𝑟1∗𝑡1 ∗

𝐶𝑎𝑙𝑙−𝑃𝑢𝑡

𝑆𝑀
2 )

2
 

Sn= Current strike price 

Pi= Corresponds to the option price; of a call if Si>SATM; and of a put if Si<SATM. If Si=SATM then 

an average between the put and call prices is used. 

 

Sample Calculation 

The following example uses an actual S&P 500 future, sampled on July 5th 2016, to 

illustrate the VCME calculation used in this paper. We selected the near-term option that expires 

on July 29th 2016 and the next-term option of august 5th 2016, to satisfy the 23 to 50-day 

window required for the calculation. In this case the expiration periods are 24 for near-term and 

31 days for next-term.  

Sigma is calculated using the strike price with the smallest absolute difference in Call and 

Put prices from the closing price of the S&P 500 futures contract on each specific day. In 

addition, we eliminate options with a bid or ask price of zero, as well as truncate the series to 

exclude instances where the call or put are less than 5 cents on 2 consecutive days. In this case, 

the ATM strike is 2085 and the series only includes prices between 2025 and 2270. Once the 

ATM strike is determined, we calculate sigma 1 for the near-term and sigma 2 for the next-term 

option using the formulas listed above, where PATM is 27.25 and 31.25 for the near and next-term 

options respectively. This leads to a Sigma 12 of 0.028 and a Sigma 22 of 0.024 and a VCME of 

15.75.  

σ1
2 =

1

0.0658
∗ 2𝑒0.0025∗0.0658 ∗  0.000926 − (𝑒0.0025∗0.0658 ∗

26.75 − 27.75

2085
)

2

 (2) 

  

 𝑉𝐶𝑀𝐸 = 100 ∗ √
0.0658

0.0849
∗

0.0849−0.0821917

0.0849−0.0658
∗  0.0281 +

0.0849

0.0821917
∗

0.0849−0.0821

0.0849−0.0658
∗  0.0243 

(3) 

Where,  

T1= 0.0658,   T2= 0.0849,   Tm= 0.0821 
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 Near-Term 24 days   Next-Term 31 days  

Strike Call Put  Strike Call Put 
2025 70 72.25  2025 73.5 75.5 
2030 66 68  2030 69.5 71.5 
2035 61.75 64  2035 65.5 67.5 
2040 58 60  2040 61.75 63.5 
2045 54 56  2045 58 59.75 
2050 50.25 52.25  2050 54.25 56 
2055 46.5 48.25  2055 50.5 52.25 
2060 43 44.75  2060 47 48.5 
2065 39.25 41  2065 43.5 45 
2070 36 37.5  2070 40 41.5 
2075 32.5 34.25  2075 36.75 38.25 
2080 29.5 31  2080 33.5 35 
2085 26.75 27.75  2085 30.75 31.75 
2090 23.75 24.75  2090 27.75 28.75 
2095 21 22  2095 25 26 
2100 18.5 19.25  2100 22.25 23.25 
2105 16 16.75  2105 19.5 20.5 
2110 13.5 14.5  2110 17.25 18 
2115 11.5 12.25  2115 15 15.75 
2120 9.75 10  2120 12.75 13.5 
2125 8 8.5  2125 10.75 11.75 
2130 6.5 7  2130 9 10 
2135 5 5.75  2135 7.5 8.25 
2140 4.1 4.5  2140 6.25 7 
2145 3.15 3.55  2145 5 5.75 
2150 2.4 2.8  2150 4.1 4.55 
2155 1.8 2.25  2155 3.2 3.65 
2160 1.3 1.75  2160 2.5 2.95 
2165 0.95 1.35  2165 1.95 2.35 
2170 0.7 1.05  2170 1.5 1.9 
2175 0.5 0.9  2175 1.15 1.55 
2180 0.4 0.75  2180 0.85 1.25 
2185 0.3 0.65  2185 0.7 1.05 
2190 0.2 0.55  2190 0.55 0.9 
2195 0.2 0.5  2195 0.45 0.8 
2200 0.3 0.5  2200 0.35 0.7 
2205 0.1 0.45  2205 0.3 0.65 
2210 0.1 0.45  2210 0.25 0.6 
2215 0.1 0.4  2215 0.2 0.55 
2220 0.1 0.4  2220 0.2 0.5 
2225 0.05 0.4  2225 0.15 0.5 
2230 0.05 0.4  2230 0.15 0.5 
2235 0.05 0.4  2235 0.1 0.45 
2240 0.05 0.35  2240 0.1 0.45 
2245 0.15 0.35  2245 0.1 0.45 
2250 0.15 0.35  2250 0.1 0.45 
2255 0.15 0.2  2255 0.1 0.4 
2260 0.05 0.35  2260 0.1 0.4 
2265 0.05 0.35  2265 0.1 0.4 
2270 0.1 0.35  2270 0.05 0.4 

 
Table 1 – Sample of near-term and next-term option prices on E-Mini S&P 500 futures. 
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While this is an illustrative example, as stated previously, our final dataset includes 

around 4 million observations which allows us to calculate 1,257 daily VCME measures, ranging 

from values of 9 to 53, with an average of 17.20.  

 

Model Specifications 

The main variables in our study are defined as follows: spx, vix, vcme and r_vol 

represent the daily closing prices of the S&P 500 Index, the VIX, VCME (our alternative VIX 

measure) and Realized (historical) Volatility, respectively. lnr1_spx, lnr5_spx, lnr10_spx and 

lnr21_spx are the 1-, 5-, 10- and 21-day forward-looking log returns of the S&P 500.  

 

Days are measured in trading days and the time intervals have been chosen to reflect 1-

day, 1-week, 2-week and 1-month calendar periods. Log returns are calculated as ln(SPXt+1 / 

SPXt) for 1-day returns and ln(SPXt+21 / SPXt) for 21-day returns. Similarly, d1_vix, d5_vix, 

d10_vix, d21_vix are the 1-, 5-, 10-, and 21-day forward looking differences calculated as vixt+n 

– vixt and d1_vcme, d5_vcme, d10_vcme, d21_vcme are the 1- , 5-, 10-, and 21-day forward 

looking differences calculated as vcmet+n – vcmet. r_vol is based on the 21-day period standard 

deviation of daily log returns and then annualized by multiplying with the square root of 365. 

 

Preliminary Statistics 

Our three main variables of interest in terms of comparisons are vix, vcme and r_vol.  

Their summary statistics are as follows: 

 

 
 

Table 2 – Summary statistics of vix, vcme and r_vol. 

 

 

We note that the mean of the vix is higher than vcme which in turn is higher than r_vol.  

By contrast, the vix shows the lowest standard deviation at about 6.9% while r_vol has the 

highest standard deviation at about 8.6%. The summary statistics of our measure vcme appear to 

be somewhere between the vix and r_vol.   

       r_vol        1257    .1704685    .0855814       .058      .5947
        vcme        1257    .1719703    .0601138   .0987011    .539649
         vix        1257    .1741054    .0591713      .1032        .48
                                                                      
    Variable         Obs        Mean    Std. Dev.       Min        Max
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A visual comparison of the time series plots of vix and r_vol reveals that the two 

measures are very similar, although there are a few periods when vcme appears to be higher than 

the vix. Still, the two variables are highly correlated at 0.9924. 

 

 
 

Figure 1 – VIX versus VCME. 

 

In addition, we examine the correlation with r_vol and find that actual volatility shows a 

much lower correlation with the two measures vix and vcme.  Further, the 21-day lagged values 

of vix and vcme now see a further decline and correlations drop to only about 63%. 

 

 
 

 

      Table 3 – Correlations of vix, vcme and r_vol. Table 4 – Correlations of 21-day lags vix, vcme and r_vol. 

 

 

.1
.2

.3
.4

.5

0 500 1000 1500
day#

VIX vcme

       r_vol     0.8323   0.8251   1.0000
        vcme     0.9924   1.0000
         vix     1.0000
                                         
                    vix     vcme    r_vol

       r_vol     0.6353   0.6306   1.0000
        L21.     0.9925   1.0000
        vcme  
        L21.     1.0000
         vix  
                                         
                    vix     vcme    r_vol
                    L21.     L21.         
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Moreover, the histograms of the differences in vix and vcme suggest that their respective 

changes are not normally distributed but instead show leptokurtic behavior which extends from 

1-day to 21-day periods.  

 

Figure 2 – Histogram of 1-day VIX changes 

 

Figure 3 – Histogram of 1-day VCME changes 
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Figure 4 – Histogram of 21-day VIX changes 

 

Figure 5 – Histogram of 21-day VCME changes 

 

Non-Gaussian distribution of 1-day changes is confirmed by skewness values of 1.44 and 1.59 

for vix and vcme respectively. 

 

Financial time series data typically exhibit auto-correlation, non-stationarity and 

heteroskedasticity. In our dataset, the daily closing prices of spx, vix and vcme are clearly auto-
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correlated, however, the log returns of spx and differences in vix and vcme do not exhibit auto-

correlation.  

 

We observe ADF4 t-statistics for spx of -1.012 for 1-day lags and -1.355 for 21-day lags 

both of which suggest that the daily prices of spx display a non-stationary stochastic trend.  By 

contrast, the t-statistics of vix (-3.219), vcme (-3.515) as well as their 21-day differences in 

d21vix (-10.717) and d21vcme (-10.972) clearly reject the null hypothesis.  Similarly, we cannot 

find evidence of a non-stationary stochastic trend in 1-day and 21-day log returns of spx with t-

statistics of -24.586 and -9.609 respectively.  

 

Heteroskedasticity is present when regressing r_vol on vix and vcme but it is also present 

when we regress 1-day to 21-day log returns of spx on either vix or vcme. To correct for 

heteroskedasticity, we use ‘White-corrected’ robust standard errors for all time-series regressions 

to follow.  We now have to assess to what extent these initial insights help us answering our two 

main research questions.  

 

VIX versus VCME: Which index provides better estimates of future volatility? 

To address our first research question, we initially run a set of regressions using the 

following model specifications: 

 
𝑟_𝑣𝑜𝑙𝑡 =  𝛽0 + 𝛽1𝑣𝑖𝑥𝑡  + 𝜀𝑡 (4) 

𝑟_𝑣𝑜𝑙𝑡 =  𝛽0 + 𝛽1𝑣𝑐𝑚𝑒𝑡  + 𝜀𝑡 (5) 

 

 

 
We also examine how the lagged values of vix and vcme change the forecasting 

efficiency of future realized volatility.  For the 1-, 5-, 10- and 21-day lagged values of the vix 

and vcme, our regressions take on the following format: 

 
𝑟_𝑣𝑜𝑙𝑡 =  𝛽0 + 𝛽1𝑣𝑖𝑥𝑡−𝑛  + 𝜀𝑡 (6) 

                                                           
4 The Augmented Dickey-Fuller (ADF) test examines the presence of a stochastic trend.  Under the null hypothesis 
of this test, Yt has a stochastic trend, i.e. a unit root, whereas the alternative hypothesis suggests that Yt is 
stationary. Critical values are -2.570 (10%), -2.860 (5%) and -3.430 (1%). 
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𝑟_𝑣𝑜𝑙𝑡 =  𝛽0 + 𝛽1𝑣𝑐𝑚𝑒𝑡−𝑛  + 𝜀𝑡 (7) 

 

Tables 5 and 6 show the regression summaries for our variables of interest.  The two volatility 

measures have very similar coefficients, all highly significant at the 1% level.      

 

 
 

Table 5 – Regressions of r_vol on vix and its lagged values. 

 

 
Table 6 – Regressions of r_vol on vcme and its lagged values. 
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Interestingly with both variables, R2 increases from just under 0.7 at contemporaneous 

effects to about 0.75 for 5-day lagged values.  At that one-week time period, in both cases about 

75% of the variations in r_vol are explained by the model. For periods of 10-day lags, 

forecasting efficiency reverts back to just above 70%. However, for our longest period of 

interest, the 21-day lags, we see a dramatic reduction in R2 to only about 40%.   For time 

horizons of 1-5 days, our results are in contrast with Christoffersen and Diebold (2000) who 

suggest the accuracy of volatility forecasts decreases as they increase the time horizon. However, 

our findings are in line with their results suggesting that the efficiency of volatility forecasts 

beyond the 10-day time horizon rapidly decreases.  In these initial regressions, the vix has 

slightly higher R2 values which suggests that the level of the vix has a modestly higher 

forecasting efficiency over our volatility measure.  

 

We further examine the forecasting efficiency of the two volatility measures by 

investigating their n-day differences with r_vol.  To do so, we create an algorithm that 

determines the first two moments of n-day differences between vix and r_vol as well as vcme 

and r_vol. Our findings are summarized in the following graphs below.  

 

 

 
 

Figure 6 – n-day differences between VIX and actual volatility 
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Figure 7 – n-day differences between VCME and actual volatility 
 

The most obvious take-away from here is also in line with earlier studies.  As we increase 

the time-horizon, the average differences between implied volatility (vix, vcme) and actual 

volatility increase steadily.  In addition, these results confirm that the 5-day time period seems to 

be a turning point when the variation of differences increases as well. Although standard 

deviations of n-day differences are generally higher for vcme, we find that average differences 

between vcme and r_vol are lower than those of the vix.  From 1- to 5-day periods average vix 

differences are more than twice as high as average vcme differences.  At the 21-day time 

horizon, average vix differences are 0.007 whereas average vcme differences are only 0.0049.  A 

risk-seeking investor may be more akin to use our volatility measure to fine-tune volatility 

forecasts using average n-day differences.  Here, our measure has an advantage over the vix 

since n-day differences for vcme are substantially lower than those of the vix, especially for the 

shorter time horizons when vcme differences are only about half of those for the vix, albeit with 

the caveat that the swings in vcme prices may be slightly larger than those of the vix.   

 

To summarize the findings of our first research questions, we conclude that the vix and 

vcme have very similar regression results.  Forecasting efficiency of future volatility is highest at 

the 5-day time interval where approximately 75% of the variations in future volatility can be 

explained by each of the models.  However, there is a stark decline at the 21-day time interval 
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when R2 drops to only about 40%.  The regressions show a slight edge of the vix over vcme.  

Still, our measure appears to have smaller differences with future realized volatility at all time 

horizons, making vcme a viable alternative for an implied volatility measure.  From a risk 

management perspective, particularly for an institution that is more capable of managing slightly 

larger standard deviations, our measure may be more attractive, if the n-day differences method 

fits within their overall risk management models. 

 

VIX versus VCME: Which index provides better estimates of future S&P 500 returns? 

While an accurate volatility forecast is desirable and, in the case of some financial 

institutions a daily required procedure, we submit that it may be more beneficial to find out how 

implied volatility measures relate to stock returns.  This leads to our second research question 

and we use similar models to examine the effects of vix and vcme on S&P 500 log returns.  

Initially, we test how the levels of vix and vcme relate to stock returns.  The regressions take on 

the following format:  

 
𝑙𝑛𝑟_𝑛_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑣𝑖𝑥𝑡−𝑛  + 𝜀𝑡  (8) 

𝑙𝑛𝑟_𝑛_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑣𝑐𝑚𝑒𝑡−𝑛  + 𝜀𝑡 (9) 

 

 

 
 

Table 7 – Regressions of future spx log returns on vix. 
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Table 8 – Regressions of future spx log returns on vcme. 
 

 

We find that both sets of regressions have statistically significant results at the 1% level.  

Nevertheless, we observe an interesting change in terms of the goodness of fit of these models.  

Whereas in our earlier regressions, we observed a decline in R2 values when we increased the 

time horizon.  Here we notice quite the opposite.  At 1-day time horizons, only about 3% of the 

variations in stock returns can be explained by the models. However, as we increase the time 

horizon, R2 increases to about 21%.  We also notice that our measure has a slight edge over vix, 

albeit the differences are not showing a meaningful improvement of the goodness of fit. 

 

In addition, we test the impact of changes in vix and changes in vcme on 

contemporaneous and inter-temporal SPX returns.  To test contemporaneous effects, the models 

are as follows: 

 

𝑙𝑛𝑟_𝑛_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑑_𝑛_𝑣𝑖𝑥𝑡  + 𝜀𝑡 (10) 

𝑙𝑛𝑟_𝑛_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑑_𝑛_𝑣𝑐𝑚𝑒𝑡  + 𝜀𝑡 (11) 
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Table 9 – Regressions of future spx log returns on n-day vix changes. 
 

 
 

Table 10 – Regressions of future spx log returns on n-day vcme changes. 
 

 

As before, all variables are significant at the 1% level. For contemporaneous effects, the 

models testing changes in vix on spx returns appear to have a better fit than vcme. Similar to our 

earlier studies, the 5-day time interval performs best wherein 74% of the changes in spx returns 
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can be explained by the model.  vcme fairs slightly worse with an R2 of 68.2%, however, the 5-

day window seems to be the optimal interval within the time periods we examined.   

 

While understanding these contemporaneous relationships is important, inter-temporal 

effects may be much more relevant when it comes to formulating certain trading and/or risk 

management strategies.  Therefore, we examine inter-temporal effects of changes in implied 

volatility on subsequent spx returns.  To test inter-temporal effects, the models are as follows: 

 
𝑙𝑛𝑟_5_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑑1_𝑣𝑐𝑚𝑒𝑡  + 𝜀𝑡 (12) 

𝑙𝑛𝑟_10_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑑1_𝑣𝑐𝑚𝑒𝑡  + 𝜀𝑡 (13) 

𝑙𝑛𝑟_21_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑑1_𝑣𝑐𝑚𝑒𝑡  + 𝜀𝑡 (14) 

𝑙𝑛𝑟_10_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑑5_𝑣𝑐𝑚𝑒𝑡  + 𝜀𝑡 (15) 

𝑙𝑛𝑟_21_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑑5_𝑣𝑐𝑚𝑒𝑡  + 𝜀𝑡 (16) 

𝑙𝑛𝑟_21_𝑠𝑝𝑥𝑡 =  𝛽0 + 𝛽1𝑑10_𝑣𝑐𝑚𝑒𝑡  + 𝜀𝑡 (17) 

 

For brevity, we only show the model specifications for vcme but the same models are 

applied to vix as well.  

 

 
 

Table 11 – Inter-temporal regressions of future spx log returns on n-day vcme changes. 
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Table 12 – Inter-temporal regressions of future spx log returns on n-day vix changes. 
 

 

Testing inter-temporal effects, we can now see how the results might be more relevant in 

an applied setting. For short-term inter-temporal effects, the 1-day changes in implied volatility 

have very little if any relevance on future stock returns 5-days, 10-days and 21-days out.  While 

the effects on 5-day to 10-day spx returns are still significant, the further out our estimates go, 

the smaller the coefficients and at the 21-day window, the model is no longer significant. 

 

For 5-day changes in vcme, the subsequent 10-day spx return window has the highest R2 

with almost 20% but as we increase the time interval to subsequent 21-day returns, the goodness 

of fit measure decreases drastically to only 6.5%. 

 

Inter-temporal vix regressions show very similar results albeit with slightly higher R2 

values. Similar to our earlier studies, we find that there is limited effectiveness in forecasting 

efficiency beyond the 10-day window.  Using these simple models, we find observing changes in 

implied volatility over a 5-day time horizon gives us the best goodness of fit when it comes to 

stock returns 10 days out with the caveat however, that only about  20% (22.9% for vix) of the 

variation in future stock returns are explained by 5-day changes in vcme.  Overall, the vix 

appears to have a small edge over vcme when it comes to the forecasting efficiency of 

subsequent stock returns with these direct comparisons.   
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Assessing the findings of our second research questions, we observe rather similar results 

in a direct comparison of the two implied volatility measures. We notice that the level of vcme 

has a modest edge over the vix in terms of forecasting future stock returns up to five days out.  

For future 10-day and 21-day returns, both volatility measures show nearly identical results.  We 

are encouraged by the fact that our measure fares slightly better than the vix for up to five days 

out.  In addition, we notice that the goodness of fit increases when we lengthen the time period 

returns so that at 21-day returns over 21% of the changes in spx returns can be explained by the 

model.  

 

We also note that changes in our implied volatility measures are all highly significant in 

terms of contemporaneous spx returns but these concurrent relationships may not be all that 

helpful for a risk manager.  When we examine inter-temporal effects, we notice that our beta 

coefficients are much smaller and R2 values, particularly for effects of 1-day changes, lead us to 

question the effectiveness of a return forecast.  In terms of finding an optimal forecasting 

window, we notice that 5-day changes in vix have the highest impact on 10-day spx returns at an 

R2 of 22.9% ahead of our vcme measure at 19.6%.  

 

CONCLUSIONS 

We began this journey with the goal of finding a more efficient measure of volatility and 

risk that did not have to rely on the VIX. Our findings were quite interesting, in that we showed 

that both measures followed similar trends and patterns. These measures were highly efficient at 

forecasting short-term future volatility, being able to explain up to 75% of that variation. While 

both measures lose their effectiveness over longer periods of time, the average n-day differences 

between VCME and actual volatility are consistently lower than those of the VIX at any of the 

given time frames.   

 

When it comes to forecasting stock returns, we see an interesting reversal of effects 

where longer time windows, of returns and changes in VCME, have a higher explanatory power. 

Both measures fare relatively well for contemporaneous effects, with highly significant results, 

specifically at the 5-day time interval, with more modest inter-temporal effects, specifically for 

shorter 1-day windows, as well as windows over 10-days.  
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Our main take-away from this study is that while both measures do behave similarly, 

there is a clear attractiveness, for institutions, to using our measure for the following reasons: 

Higher volatility might suggest that our measure is more responsive to changes in underlying 

market conditions. At the same time, vcme had consistently lower average n-day differences to 

actual volatility than those observed by the vix.  This would suggest that a financial institution 

seeking responsive risk measures, while on average generating less deviations from actual 

volatility, might find our volatility measure more beneficial. 

 

In closing, we suggest some extensions to this study as follows: 

Given that our dataset captures a time frame of an unambiguous bull market, we propose to do a 

follow-up study that includes daily data from the financial crisis period of 2008/09 which 

unfortunately was not available from our data vendor.  Examining how the two volatility 

measures compared during the crisis period may give additional insights to help distinguish the 

pros and cons of these risk measures. 

 

Similarly, we would like to extend our methodology to intra-day data.  Again, this would 

necessitate the purchase of data from a different vendor and a drastic increase of computing 

requirements. Lastly, we would like to examine other market variables in addition to implied 

volatility measures with a view to generate better volatility forecasts but also to improve 

predictions on underlying asset returns.  
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